

How to Sind a
$$\xi$$
 b using Sormulas:

$$a: \frac{ZYZx^{2} - ZXZXY}{nZx^{2} - (ZX)^{2}} = \frac{79 \cdot 163 - 29 \cdot 429}{6 \cdot 163 - 29^{2}}$$

$$= \frac{436}{137} = \frac{3.182}{3.182}$$

$$b: \frac{mZxY - ZxZY}{nZx^{2} - (ZX)^{2}} = \frac{6 \cdot 429 - 29 \cdot 79}{6 \cdot 163 - 29^{2}}$$

$$= \frac{283}{137} = 2.066$$

How to find r using formula:

$$r = \frac{mZxy - Zx Zy}{\sqrt{nZx^2 - (Zx)^2}} \sqrt{nZy^2 - (Zy)^2}$$

$$= \frac{6 \cdot 429 - 29 \cdot 79}{\sqrt{6 \cdot 163 - 29^2}} \sqrt{6 \cdot 1143 - 79^2} \sqrt{137} \sqrt{617}$$

$$r = 283 \div (\sqrt{137} \div \sqrt{617}) \text{ Enter} \text{ } r = .973$$

Walk time | Blood Sugar level 1)n=6 135 10 2) Scatter Plot 125 15 130 15 BSOS level 150 ۱0 115 20 valktime 10 100 30 Clear all lists and + 4: dear lists Enter 2nd O bbb...b Diagnostic On Enter Enter a=144,853 walk time - x - X - X I b= -1.441 BS level → Y→L2 r=.763 use LinReg (a+bx) r= - .874 a≈ 144.9 $\Gamma^2 \approx 76/.$ $b \approx -1.4$ 76% of my BS level are y=144.9-1.4x explained by my walking time.

A class has 8 males \$ 12 Females.
IS we randomly select one person,
Sind the prob. that we select
1) one male 2) one Semale
P(male):
$$\frac{\# Males}{\# People} = \frac{8}{20} = \frac{2}{5}$$
 P(Female): $\frac{\# Females}{\# People} = \frac{12}{20} = \frac{3}{5} = .6$

٦Ì

A standard deck of playing cards has
52 Cards, 26 red, 12 Sace, 4 Ares.
Let's randomly select one card,

$$P(\text{Red}) = \frac{26}{52} = 1 = 1.5$$

 $12 = 52$ MATH Infrace Enter
 $P(\text{Sace}) = \frac{12}{52} = 13$ = 231 (MATH) Enter
 $P(\text{Ace}) = \frac{4}{52} = 13$

$$E \rightarrow Desired event$$

$$E \rightarrow E-bor, E-complement, Not E$$

$$P(E) + P(E) = 1 \quad Complement \quad Rule$$

$$P(E) = -1 - P(E)$$
Suppose
$$P(E) = -12$$

г

Some Prob. rules:

$$1)0 \le P(E) \le 1$$

a) Sum of all prob. is T.
b) $P(E)=1 \iff Sure$ event
4) $P(E)=0 \iff Tmpossible$ event
5) $0 \le P(E) \le .05 \iff Rare$ event
6) $P(E)=1 - P(E)$ Complement Rule

Suppose
$$P(E) = \frac{2}{15}$$

i) write in decimals.
2) write in 1.33
2) write in 1.7 , $P(E) = .133(100)/. = 13.3/.$
3) find $P(E)$
 $P(E) = 1 - P(E) = 1 - \frac{2}{15} = \frac{13}{15}$
 $1 = 2 = 15$ MATH II. Frac Enter

I surveyed 100 people. I asked them
For Yes, NO, or No Comment answers
Are You Vaccinated?

$$10 \ 16 \ 50$$

Females $18 \ 20 \ 50$
Total 36 28 36 100
IS we randomly select 1 person,
P(Male) = $50 \ -55 \ P(Yes) = \frac{36}{100} = 1.36$
P(Male or Yes) = $\frac{24}{100} = .24$

Г

The vert vandomly select one person,
what is the prob. that he/she has
birthday
1) Today
2) This week

$$\frac{1}{365} = .003$$

 $\frac{1}{52}$
 $\frac{1}{52}$

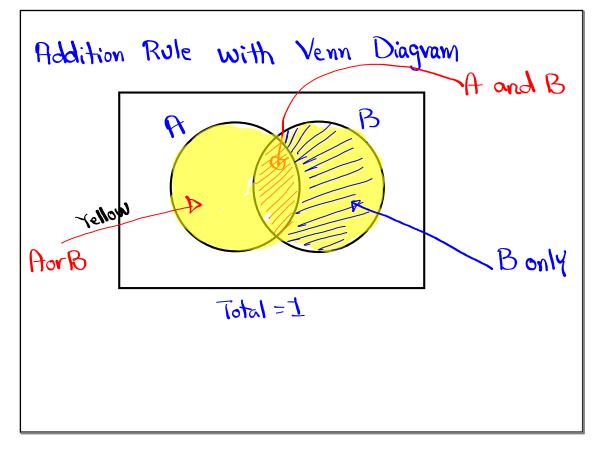
Addition Rule:
Key word: OR
Single Action event

$$P(A \text{ or } B)$$

 $= P(A) + P(B) - P(A \text{ and } B)$
 $= P(A) + P(B) - P(A \text{ and } B)$
 $P(A) = 1 - P(A) = -7$, $P(A \text{ and } B) = . 25$
 $P(A) = 1 - P(A) = 1 - .4 = .6$
 $P(B) = 1 - P(B) = 1 - .7 = .3$
 $P(A \text{ or } B) = P(A) + P(B) - P(A \text{ and } B)$
 $= .4 + .7 - .25$
 $= .85$

$$P(HB) = .65$$

$$P(FF) = .45$$


$$P(HB \text{ and } FF) = .3$$

$$P(HB \text{ and } FF) = .35$$

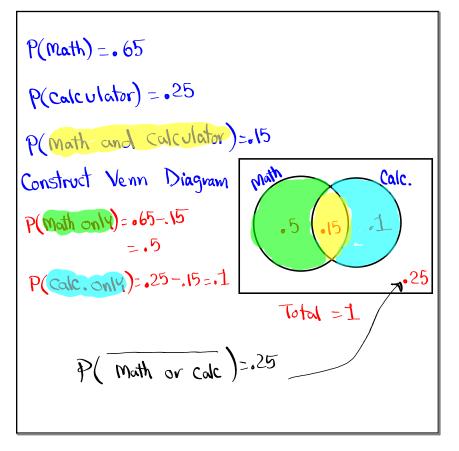
$$P(FF) = 1 - .45 = .55$$

$$P(HB \text{ or } FF) = P(HB) + P(FF) - P(HB \text{ and } FF)$$

$$= .65 + .45 - .3 = .8$$

$$P(A) = .8$$

$$P(B) = .3$$


$$P(A \text{ only}) = .3 - .15$$

$$P(B \text{ only}) = .8 - .15 = .65$$

$$P(A \text{ only}) = .8 - .15 = .65$$

$$P(A \text{ only}) = .8 - .15 = .65$$

$$P(A \text{ only}) = .8 - .15 = .65$$

